莫比乌斯反演的两种形式及其证明

莫比乌斯反演形式一:

                                               \large F(n)=\sum_{d|n}f(d)=>f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})

 

证明:

\large F(\frac{n}{d}) 代入右边的式子,得:

                                     \large f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(d)\sum_{k|\frac{n}{d}}f(k)=\sum_{k|n}f(k)\sum_{d|\frac{n}{k}}\mu(d)

根据莫比乌斯函数的性质,有定理:

                                                    \large \sum_{d|n}\mu(d)=\begin{cases}1&n==1\\0&n>1\end{cases}

因此,只有当 \large \frac{n}{k}==1 时,即n==k时,\large \sum_{d|\frac{n}{k}}\mu(d)=1,其余时为0。

                                                       \large \sum_{k|n}f(k)\sum_{d|\frac{n}{k}}\mu(d)=f(n)

形式一得证。

 

莫比乌斯反演形式二:

                                                        \large F(n)=\sum_{n|d}f(d)=>f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)

证明:

还是一样,把 \large F(d) 代入右边的式子,令 \large k=\frac{d}{n} 得:

                                           \large f(n)=\sum^{+\infty}_{k=1}\mu(k)F(nk)=\sum^{+\infty}_{k=1}\mu(k)\sum_{nk|t}f(t)=\sum_{n|t}f(t)\sum_{k|\frac{t}{n}}\mu(k)

同理,当且仅当 \large \frac{t}{n}=1 时,也即t==n时,\large \sum_{k|\frac{t}{n}}\mu(k)=1,其余时为0,

最终有

                                                         \large \sum_{n|t}f(t)\sum_{k|\frac{t}{n}}\mu(k)=f(n)

形式二得证。

 

 

证明完毕。

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页